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Computer-based catalyst design has been a long standing dream of the chemistry community for replac-
ing tedious and expensive experimental trial-and-error. While first-principle kinetic modeling emerges
as a powerful tool for catalyst selection, it has mainly been limited to using a single catalyst descriptor,
simplified chemical kinetic models, and assumptions that question the predictive capability of computa-
tional results in the absence of addressing the effect of error in kinetic parameters. Here, we introduce a
new framework to address the effect of model uncertainty on optimal catalyst property identification.
The framework is applied to the ammonia decomposition reaction for CO-free H2 production for fuel cells.
It is shown that a range of materials, rather than a single material, should be experimentally screened.
Among kinetic model parameters, the often neglected adsorbate–adsorbate interactions can have a pro-
found effect on catalyst selection. The importance of lateral interactions is confirmed with recent exper-
imental data.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

The discovery of catalysts has traditionally been an Edisonian
process. High throughput experimentation [1,2] has significantly
accelerated this process but lacks understanding of the underlying
chemistry and is still limited to a fairly narrow parameter range.
Model-based design offers the promise of alleviating the bottle-
neck of high throughput synthesis and evaluation, since the main
screening is carried out computationally [3–8].

The first step in catalyst design is to identify optimal catalyst
properties (typically termed as descriptors) that provide the best
performance, e.g., highest activity, selectivity, stability, etc. Most
studies so far have focused on a small number of descriptors, e.g.,
the heats of chemisorption of key species, and most often on a sin-
gle descriptor and performance metric (e.g., catalyst activity). An
activity volcano curve is then constructed, by varying this descrip-
tor, and the optimum descriptor value, corresponding to the curve
maximum, is found. The next step is to identify materials with
those optimal properties. The above approach has delivered excit-
ing results in predicting alloys from single metal catalyst modeling
ll rights reserved.
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with optimal performance using the linear interpolation approach
in the periodic table [3] and more recently a density functional the-
ory (DFT)-built library of parameters for single monolayer bimetal-
lics [8] whose properties do not follow the interpolation principle.
Some recent work has also been oriented towards multiple descrip-
tors in the context of catalyst selection, for example, see [9–12].

Previous studies have also tacitly assumed that the models are
exact. Given a certain kinetic model, a single optimal property set
(e.g., corresponding to the maximum of the volcano curve) is pre-
dicted. Uncertainty is particularly pronounced in catalytic systems
due to inaccuracy in computed energetics and pre-exponentials,
even when using DFT calculations. Furthermore, the rate limiting
step, pre-exponentials, and the most abundant reactive intermedi-
ate are often assumed to be the same on all catalysts in computa-
tional work related to volcano curve generation. For example, using
the bond-order conservation (BOC) method to compute activation
energies on Pt, Ru, Fe, Re for ammonia decomposition and some
experimental data, it was concluded that N desorption is the
rate-determining step (RDS) for all the metals (no microkinetic
models were constructed) [9]. Similarly, nitrogen desorption,
assumed to be the RDS, along with hN + hNHx � 1 for site conserva-
tion, was used to create a volcano curve [10]. These model uncer-
tainties and assumptions can render optimal property prediction
inaccurate and misguide experimental efforts. In addition, these
modeling efforts are in contrast to rationalization of experimental
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Table 1
Nominal parameter values from [12] for Ru/c-Al2O3 catalyst. A stands for pre-
exponential and s for sticking coefficient (if less than 1), b is the temperature
exponent in the modified Arrhenius form, and BI is the bond index in the UBI-QEP
framework.

Reaction A[s�1], s[] b BI

H2 + 2�? 2H� 0.08 0 0.5
2H�? H2 + 2� 2.4 � 1013 0 0.5
N2 + 2�? 2 N� 2.2 � 10�7 0 0.8
2 N�? N2 + 2� 1.6 � 1010 0 0.8
NH� + �? N� + H� 1.4 � 1013 0 0.5
N� + H�? NH� + � 8.8 � 1012 �0.39 0.5
NH2� + �? NH� + H� 7.2 � 1012 0 0.5
NH� + H�? NH2� + � 4.6 � 1012 �0.39 0.5
NH3� + �? NH2� + H� 1.4 � 1013 0 0.5
NH2� + H�? NH3� + � 8.8 � 1012 �0.39 0.5
NH3 + �? NH3� 0.63 0 0.5
NH3�? NH3 + � 4.4 � 1013 0 0.5
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data whereby the rate determining step was postulated to change
on each leg of the volcano curve from NAH bond scission to N
desorption [11].

This contribution aims at advancing catalyst discovery strate-
gies by prediction of optimal catalyst properties through multiple
descriptors, enabled using microkinetic models with no a priori
assumptions in solving the governing equations, and by elucidating
the effect of uncertainty on optimal catalyst properties. Finally, the
effect of reactor operating conditions (macroscopic scale) on opti-
mal properties (electronic scales) is assessed. To the best of our
knowledge, the inclusion of the effect of uncertainty in kinetic
parameters and the quantification of the effect of adsorbate–adsor-
bate interactions on the optimal catalyst properties are presented
for the first time. Recent experimental data are consistent with
the prediction of the importance of lateral interactions on predict-
ing the optimal catalyst properties.

2. Methods

The framework developed herein is generic. We choose the
ammonia decomposition for CO-free hydrogen production

2NH3 ! N2 þ 3H2 ð1Þ

as a prototype example for illustration purposes. The reaction net-
work of elementary reactions is given in Fig. 1c and Table 1. Essen-
tially, ammonia gas adsorbs onto the catalyst surface, where
hydrogen atoms are abstracted one at a time. Atomic nitrogens
and hydrogens recombine to produce N2 and H2, respectively.

The rate constant of each elementary step is modeled via a
modified Arrhenius equation as shown below:

ki ¼ A0i

T
Tref

� �bi

exp � Ei

RT

� �
; i ¼ 1; . . . ;m ð2Þ

The activation energy depends on both the temperature and the
surface coverage of species and is estimated through the Unity Bond
Index-Quadratic Exponential Potential (UBI-QEP) theory via two
mappings (Fig. 1): the first computes species binding energies from
atomic binding energies (panels b and a) and the second activation
energies from species binding energies (panels c and b) [13–15].

The UBI-QEP method uses semi-empirical relations to relate the
species binding energies to the atom binding energies. NH2 and NH
are typically ‘‘strong binding,’’ and NH3 is a ‘‘weak binding’’ species.
The activation energies are computed from the heats of chemisorp-
tion of species by assuming a value of bond index (BI), which is
typically 0.5, to approximate the transition state with respect to
the reactants. However, recent DFT calculations and comparisons
to experimental data indicate different values [13,16]. For example,
in our recent work, the bond indices were fitted to data and com-
pared with DFT values [13] and are summarized in Table 1. These
Fig. 1. Illustration of mapping atomic binding energies (a) to species binding
energies (b) and then to reaction activation energies (c).
refined values are used in this work. The nominal pre-exponential
values were obtained by refining the model to experimental data
as reported in [12]. The temperature dependence in the activation
energy arises from the adsorption properties being temperature
dependent through statistical mechanics, as explained in [17].
These temperature and coverage dependent atomic binding ener-
gies are propagated through the UBI-QEP equations to activation
energies of the entire mechanism.

The importance of lateral interactions on reaction rates and
macroscopic reactor performance cannot be understated. For
example, it was shown that the strong NAN interactions impact
drastically model predictions [13]. For this reason, some computa-
tional groups have been incorporating interactions in mean field
and Monte Carlo microkinetic models [14–17]. Furthermore, sig-
nificant effort has been devoted by Kitchin and co-workers to
deriving a theoretical framework describing lateral interactions
of different adsorbates on various metals [18]. While earlier efforts
employed semi-empirical methods to account for interactions, DFT
has more recently been used to understand the effect of lateral
interactions on the reaction barriers [15–17].

The atomic binding energies are assumed to be independent of
each other (although correlation due to the electronic structure of
catalysts is likely) and of the form:

QHðhHÞ ¼ Q HðhH ¼ 0Þ þ C1hH ð3Þ
QNðhNÞ ¼ Q NðhN ¼ 0Þ þ C2hN

where QH(hH), QN(hN) are the coverage dependent binding energies,
QH(hH = 0), QN(hN = 0) are the binding energies on a clean surface,
and C1, C2 describe the surface coverage effect (assumed to be lin-
ear). Each pair (Q(h = 0), C) is an attribute of a particular catalyst.
In essence, the energetics of a microkinetic model is written as a
function of the atomic binding energies, QH(hH) and QN(hN). This
double mapping (Fig. 1) is important to enable rigorous optimiza-
tion discussed elsewhere.

In constructing a microkinetic model, to avoid the combinato-
rial problem of computing interactions among all surface species,
these adsorbate–adsorbate interactions are identified and quanti-
fied via a hierarchical multiscale approach: Once the dominant
coverages are determined by running the microkinetic model,
DFT is performed to include interactions of the dominant species
only [19] and calculate their values, and the procedure is iterated
until no changes are found between what is assumed as dominant
species and what the simulation predicts. Guided from DFT calcu-
lations, the atomic binding energies are assumed to vary linearly
with coverage and values are taken from Ref. [8] and do not vary
considerably with metal; they are rather a strong function of the
atom (in our case N and H). The values taken for C1 and C2 are those
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determined previously on Ru. Recent work (see Table 1 in Ref. [8])
shows the interaction energies for nitrogen range from �27 to
�43 kcal (mol ML nitrogen)�1 for a number of metal catalysts.
The average interaction energy of these 9 metals is �35 kcal
(mol ML nitrogen)�1. The Ru interaction energy in that work was
reported to be approximately �36.9 kcal (mol ML nitrogen)�1 and
therefore a fair representation of the average interaction energy
for doing a global catalyst search.

Specific to the ammonia chemistry, the coverage dependence of
the binding energies of H and N is propagated through the UBI-QEP
framework to the binding energies of molecular species and activa-
tion energies of elementary reactions. In all calculations, lateral
interactions are included, unless otherwise stated, through the
parameters C1 and C2. For simplicity, below the atomic binding
energies refer to the zero-coverage limit QH(hH = 0) and QN(hN = 0)
since the coverages, computed from the microkinetic model, vary
with reactor location, operating conditions, and catalyst (it is
impossible to report millions of coverage values and are not of
any interest for the results presented here).

The microkinetic model is combined with a steady state plug
flow reactor-scale model (refer to [13,14] for typical operating con-
ditions). The microkinetic and reactor model is then solved numer-
ically (integrated along the length of the reactor) and used to
predict conversion, gas-phase mole fractions, and fractional cover-
age of surface species. No assumptions about fast elementary steps,
a rate determining step, or the most abundant reactive intermedi-
ate are made. While the full microkinetic model is solved, the mod-
el is still approximate; for example, it is a mean field model, it lacks
detail information on the active site, it assumes an average interac-
tion energy, it uses the UBI-QEP framework, etc. For these reasons,
the model predictions should be considered as a guide only. Exper-
iments are necessary to confirm model predictions.

We now describe the search method for the calculation of the
optimal catalyst properties (atomic binding energies at zero cover-
age). A Monte Carlo search, which was found to be more efficient
optimization method than a regular grid search [19], was con-
Fig. 2. Ammonia conversion vs. binding energies of hydrogen and nitrogen. Optimizatio
microreactor of 1.7 cm in length, an internal diameter of 0.4 cm, operating at 1 atm, a flo
volume of 6000 cm2/cm3. The response surface has a single maximum in conversion at
ducted over a range of zero coverage hydrogen and nitrogen bind-
ing energies. Pairs of (H and N) zero coverage binding energies
were randomly generated within this range. For each pair of bind-
ing energies, a few thousand runs were sufficient to identify the
optimal catalyst properties, i.e., the (zero coverage) atomic binding
energies that give the maximum conversion of ammonia. We pre-
fer to plot the results vs. the atomic binding energies and quantify
the effect of uncertainty on those since these have recently been
used to identify new catalysts [8]. The results were compiled in a
response surface vs. the two binding energies. Fig. 2 shows a typi-
cal example.

For a fixed set of operating conditions and kinetic model
parameters, the above optimization provides the values of opti-
mal binding energies. The question that we address next is how
much these optimal binding energies vary due to uncertainty in
kinetic model parameters. This is achieved through an uncer-
tainty analysis. Uncertainty analysis entails varying the kinetic
parameters a few hundred to thousand times using again the
Monte Carlo search technique. For each set of parameters (e.g.,
pre-exponentials), deterministic microkinetic simulations are per-
formed, such as the one whose results are depicted in Fig. 2, to
identify the new optimal values of binding energies. The uncer-
tain kinetic parameters were sampled from a uniform distribution
for these simulations. The Monte Carlo method discussed herein
differs from Monte Carlo simulations of surface kinetics. It is sim-
ply used to perturb parameters from a distribution. In our case,
we carry out a double Monte Carlo search. We perturb kinetic
parameters, and for each set of kinetic parameters, an optimiza-
tion is conducted, such as the one shown in Fig. 2. The locus of
optimal binding energies provides the distribution of optimal
points and indicates how uncertain the optimal set is. This com-
bined uncertainty and optimization (i.e., uncertainty in the opti-
mal values) resulted in up to 1,000,000 simulations for each
graph and takes a few days on a standard PC. The approach is
fully parallelizable to reduce computational cost and be applied
to complex reaction mechanisms.
n results at 700 K obtained from a Monte Carlo search. Simulations conducted in a
w rate of 200 sccm, with a site density of 1.66 � 10�9 mol/cm2, and surface area per
approximately QH = 58 kcal/mol and QN = 128 kcal/mol.
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3. Effect of reactor conditions and uncertainty on optimal
catalyst properties

Fig. 2 shows an optimization example for nominal parameter
values where the conversion is plotted vs. the atom binding ener-
gies obtained from 5000 simulations. This ‘‘mountain’’ is a general-
ization of the well-known volcano curve obtained when a single
descriptor varies. The conversion of ammonia is strongly depen-
dent on both binding energies, with a maximum at about
QH = 58 kcal/mol and QN = 128 kcal/mol, which denote the optimal
catalyst properties for the nominal set of kinetic parameters. As
mentioned earlier, coverages vary with operating conditions and
along the reactor as well as with the location on the volcano curve.
Under nominal conditions corresponding to Ru catalyst, significant
fractions of N and H are found on the catalyst [13–15]. Changes in
model parameters (such as in pre-exponentials) or operating con-
ditions may also lead to change in the most abundant reactive
intermediate (MARI) and/or RDS, as indicated in Ref. [12]. These
changes are automatically predicted during optimization. For
example, at lower binding energies of N, adsorbed H dominates
with N being up to 0.2 ML, whereas at higher binding energies of
N, the coverage of N is higher, consistent with recent predictions
(see Supplementary Fig. S4 in Ref. [8] where one parameter optimi-
zation was performed). Due to the strong repulsive interactions,
the maximum coverage of N is typically below �0.5 ML. In addi-
tion, some of metals with high affinity to N, such as Co and Fe,
are known to form bulk nitrides [20]. Similarly, metal hydrides
may form for some of the chosen H binding energies. Formation
of such compounds may happen away from the optimal value of
the volcano mountain and is not considered in our simplified mod-
el. Considering nitrides and hydrides as additional stable structures
over a certain range of binding energies of N and H atoms is feasi-
ble by explicitly accounting for binding of species on such materi-
als and worth considering in future work.

In order to link macroscopic and electronic scales, the effect of
operating conditions on optimal catalyst properties was studied.
The reactor temperature and inlet composition were varied (tem-
perature from 600 to 800 K; inlet fraction of ammonia from 30%
to 100% (balance Ar) with and without H2 co-feed). For each new
operating condition, an optimization, as shown in Fig. 2, was per-
formed to find the optimal properties. The inlet composition has
a negligible effect, whereas temperature changes the H binding en-
ergy between 58 and 60 kcal/mol and the N binding energy be-
tween 123 and 132 kcal/mol over this temperature range, i.e., by
less than 10%. Overall, the optimal catalyst properties vary slightly
with reactor conditions, and thus, a single optimal catalyst can be
used throughout the reactor for the ammonia decomposition reac-
tion at 1 atm.
Fig. 3. Optimal catalyst properties predicted due to uncertainty in pre-exponentials (a
deviation of the optimal binding energies in each case. The scale indicates the probabili
Next, we investigate the effect of model uncertainty on the pre-
diction of optimal properties. Each pre-exponential pair was per-
turbed within an order of magnitude (chosen logarithmically
while maintaining thermodynamic consistency), and each bond in-
dex of a reaction pair was adjusted within 25% (chosen linearly,
capped at 1; this is a fairly large perturbation in activation ener-
gies, well beyond the error of UBI-QEP or DFT method). The param-
eters (e.g., all pre-exponentials) of all elementary reactions were
simultaneously perturbed. Entropic contributions to rate constants
(pre-exponential factors and sticking coefficients) can be obtained
by expensive calculations either through vibrational analysis and
transition state theory for activated processes or molecular dynam-
ics if the activation barriers are low. For catalyst screening, this
estimation approach is impractical. Instead, pre-exponentials can
be approximated based on the type of surface reaction or activa-
tion of adsorption as described by Dumesic and co-workers [21].
For example, for immobile surface species without rotation, a value
of 1013 is reasonable. These approximate values provide order of
magnitude estimates of pre-exponential factors and are subject
to one to two orders of magnitude uncertainty. Similarly, differ-
ences between catalysts of the same order of magnitude may be
expected. In the present work, the variability of molecular binding
energies based on atomic binding energy descriptors would no
doubt reflect variability in surface mobility and suppressed trans-
lational and rotational barriers of surface intermediates [22]. An
order of magnitude uncertainty in rate constant is more of a lower
bar to this type of variability across diverse metal catalysts pro-
posed in this study.

Another perspective to our pre-exponential variation is that an
uncertainty of an order of magnitude in pre-exponential factor
(equal to an order of magnitude uncertainty in rate constant) re-
flects an uncertainty of about 2–3 kcal/mol in the reaction barrier.
A 2–3 kcal/mol uncertainty in the calculation method of reaction
barriers is reasonable [23,24]. Finally, the perturbation size of bond
indices was motivated by their recent estimation against experi-
mental data [25] from the nominal value of 0.5 [24].

The outcome of an uncertainty calculation is a distribution
function of optimal properties rather than a single value. Examples
are shown in Fig. 3. Despite the strong effect of pre-exponentials on
conversion (not shown), their effect on optimal properties is minor,
as shown in Fig. 3a: �0.9 kcal/mol for hydrogen and 2.9 kcal/mol
for nitrogen, N. Uncertainty in bond indices resulted in similar
deviations (�0.7 kcal/mol for hydrogen and 3.1 kcal/mol for nitro-
gen, N), as shown in Fig. 3b. Our results indicate that error in ki-
netic parameters within the expected uncertainty range does not
likely have a large impact on the identification of optimal binding
energies used for catalyst discovery. The lack of sensitivity of the
optimal catalyst properties on pre-exponentials is an important
) and bond indices (b). The circles and crosses indicate the average and standard
ty of obtaining a certain interval of elemental binding energies.
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result, because it indicates that the (common) assumption of using
the same set of pre-exponentials in microkinetic models for
screening catalysts should not affect catalyst selection. Bypassing
vibrational frequency calculations in catalyst design simplifies
simulations considerably. In these simulations, it is important to
note that while the pre-exponential pairs (or bond indices) are per-
turbed simultaneously, they are varied independently, i.e., the in-
puts to the uncertainty analysis are not correlated. The spread of
the optimal binding energies for nitrogen and hydrogen is found
to be weakly correlated when uncertainty in pre-exponential fac-
tors is taken into account, but the correlation is more pronounced
when bond indices are perturbed.

The importance of coverage dependent elemental binding ener-
gies was then investigated by omitting the interactions (i.e., by set-
ting C1 = C2 = 0). The results, while considering the effect of
uncertainty in pre-exponentials, are shown in Fig. 4. A substantial
shift by more than 25 kcal/mol of the optimum set of binding ener-
gies is seen. Also, the (weak) correlations between the spread in
optimal binding energies of nitrogen and hydrogen are different
for the case with and without adsorbate–adsorbate interactions.
Interestingly, the average optimal elemental binding energy of
nitrogen is decreased, while that of hydrogen is increased. Impor-
tantly, using DFT-computed binding energies of N on Ni, Pt and the
Ni–Pt–Pt-surface and Pt–Ni–Pt sub-surface configurations (Table
2), different materials are predicted as potentially optimal cata-
lysts. Specifically, when adsorbate–adsorbate interactions are in-
cluded, the single monolayer of Ni on top of Pt is predicted to be
Fig. 4. Impact of coverage dependence of heats of chemisorption on optimal (zero
coverage) elemental binding energies. The points and crosses indicate the average
and standard deviation of the optimal binding energies due to uncertainty in pre-
exponentials. The gray scale indicates the number of runs (among 600) within an
interval of elemental binding energies. Adsorbate–adsorbate interactions have a
profound effect on optimal catalyst property prediction.

Table 2
Library of DFT binding energies at a 1/9th ML N coverage on Ni, Pt, and two single
monolayer bimetallics [8]. These low-coverage values are close to the zero coverage
limit reported in the graphs. Lateral interactions are included by carrying out DFT
calculations for several coverages from 1/9th to a full monolayer, as reported in [8]
(note that high coverages of N are not thermodynamically favorable under typical
conditions). Inclusion of adsorbate–adsorbate interactions (Fig. 4) indicates that a
monolayer of Ni on Pt is a good NH3 decomposition catalyst, in agreement with recent
experiments [8], whereas the lack of interactions points to Pt and Ni being good
catalysts, in contradiction to experimental data [8].

Metal surface (1 1 1) Nitrogen binding energy (kcal/mol)

Pt–Ni–Pt 87.5
Pt 102.1
Ni 113.8
Ni–Pt–Pt 130.7
a good NH3 decomposition catalyst. This finding is an excellent
agreement with recent experimental data [8]. In contrast, when
interactions are not accounted for, Ni and Pt are predicted to be
good catalysts, contradicting experimental data [8]. Obviously,
identification of optimal catalyst properties and the effect of para-
metric model uncertainty on these properties is just the first step
toward computational materials design. Catalyst stability and syn-
thesis of these materials are important next steps that need to be
considered.

Our results indicate that accounting for coverage dependence in
binding and activation energies is critical for catalyst discovery. Gi-
ven the strong NAN, CAC, and OAO interactions on transition met-
als, we expect also a profound effect of interactions for many
catalytic reactions of hydrocarbons and oxygenated molecules.
Our results also suggest that a single metric, such as the elemental
binding energy at a certain surface coverage (e.g., a quarter mono-
layer computed with a 2 � 2 unit cell in DFT), may be insufficient
to appropriately identify optimal catalyst properties since it lacks
the explicit effect of adsorbate–adsorbate interactions that we
have considered here.
4. Conclusions

Reaction kinetics based on intuitive assumptions of a rate lim-
iting step have been successful for understanding simple reaction
systems, like the decomposition of ammonia, and for assisting with
the identification of new catalysts. As the attention turns to more
complicated chemistries, methods for predicting kinetics and opti-
mal catalyst formulations will be necessary. Making this leap re-
quires the development of full microkinetic models without
simplifying assumptions in solving them and an understanding of
how much uncertainty is tolerable in microkinetic models for the
purposes of catalyst discovery.

Herein, a framework was introduced for assessing the effect of
uncertainty on catalyst selection. Specifically, the impact of ele-
mental binding energies on catalyst activity was studied through
activation energy–binding energy mappings using a full microki-
netic model without invoking assumptions about the rate limiting
step or the most abundant intermediate. The errors associated with
the kinetic parameters of multiscale microkinetic models were ex-
plored through a parametric uncertainty in pre-exponentials and
bond indices; within the UBI-QEP method, the latter are loosely re-
lated to the location of the transition states.

Importantly, optimal binding energies were shown to be inde-
pendent of reactor conditions (for ammonia decomposition), sug-
gesting that a single optimal catalyst could be used throughout a
reactor. We expect this to be reaction specific. Uncertainty in the
kinetic parameters (pre-exponentials and bond indices) within
reasonable ranges had little effect on optimal binding energies.
The insensitivity on pre-exponentials is an important finding that
indicates that one may bypass the expensive computation of vibra-
tional frequencies in catalyst searches and focus on energetics. In
addition, since there is lack of semi-empirical (scaling) methods
relating pre-exponentials with electronic properties, current opti-
mizations are limited to assuming the same pre-exponentials for
all catalysts. Our results indicate that this assumption does not af-
fect significantly model predictions. Coverage dependence was
shown to be the most critical attribute of a microkinetic model
at least for ammonia decomposition. Consequently, it appears
impossible to narrow down the catalyst selection in terms of opti-
mal binding energies to a single material. Rather, materials within
a range (�20%) around the optimum should be exploited experi-
mentally. Work on additional reactions will be essential to further
understand the effect of uncertainty on optimal catalyst properties
and catalyst discovery.
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